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The ability to detect automated behavior within cyber log data is a useful tool for the network defender,

as malicious activity executed by scripts or bots is likely to leave behind identifiable traces in logs. This

paper presents a methodology for detecting certain types of automated activity within cyber logs based on

matching observed temporal patterns. This methodology is scalable, overcoming the infeasibility of brute

force methods to identify groups of nearest neighbors in large datasets by implementing a locality sensitive

hashing algorithm. This coordination detection methodology applied to cyber log data can be used to develop

features for input into further analysis such as anomaly detection to flag potentially malicious activity or

unsupervised clustering to characterize classes of automated behavior. Alternatively, the methodology could

be used as a means to fuse together disparate data sources by generating a ’temporal signature’ key and

allowing for fuzzy matching on this key. Examples of each type of application are presented using a dataset

of billions of records of netflow data.

1 Overview

This paper presents a general methodology for identifying similar temporal patterns across large sets of

discrete time series data at scale, with examples of results for the specific application to cyber log data

analysis. Part I describes the problem and the analytic methodology implemented to solve it, with specific

pre-processing details for the application to cyber log data. Part II then presents specific examples of results

obtained from applying this methodology to netflow data.

Part I

Problem Statement and Methodology

The general problem addressed in this paper is how to identify similar temporal patterns across entities within

large sets of time series data. This is a particular instance of the ’nearest neighbor’ problem, well known to

be intractable by brute force methods at scale due to the n2
size of the set of pairwise computations needed.

⇤Contact email: lauren@punchcyber.com. This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted
as representing the official views or policies of the Department of Defense or the U.S. Government. I would like to thank John
Lankau, Kyle Smith, and Mike Geide of PUNCH Cyber for their input as Cyber Subject Matter Experts in the examples
presented in this paper.
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Fortunately, there are approximate techniques that allow us to find the desired set of nearest neighbors with

high probability, such as Locality Sensitive Hashing (LSH), the technique employed here. In this paper, I

define appropriate temporal feature spaces and metrics relevant for identifying temporal patterns of interest

in discrete time series data and present an algorithm using locality sensitive hashing implemented via Apache

Spark that is able to identify similar temporal behavior from across millions to billions of time series. The

methodology presented here is very general and could be applied to a wide variety of discrete time series

pattern matching problems. The focus here is an application to cyber relevant log data aiming to achieve

two primary goals: 1) Identify automated and coordinated activity across entities that may be indicative of

malicious activity; and 2) Provide a means to merge together disparate time series datasets, even when no

common join key is present.

2 Temporal Feature Spaces and Metrics

2.1 Time Signature

I construct a time signature for each entity which is the set of all time bins in which this entity has activity

(this can be extended, as shown later, to a time series where the magnitude of activity at a given time is

also tracked). Figure 1 depicts an example where each entity is an IP that exhibits connection activity in

Figure 1: Time Signature Examples of Network Activity by IP

netflow logs at distinct points in time. Formally, for entity i, with records r at times t, we construct the

time signature for i as TSi = {t|9ri,t} so that in this example, we have that TSIP1 = {6, 9, 10, 13, 15, 16}
and TSIP2 = {13, 16, 17, 20, 22}.1 In order to define a metric on the space of time signatures, it is sensible

to assign a distance of zero to entities that have identical time signatures, however, there may also be cases

where we are interested to know that two entities are nearly similar (in the case of the IP example here,

this could be due to two sensors tracking the same traffic, but for whatever reason a small percentage of

observations are not observed by one of the sensors. To obtain a metric that allows us to compare time

signatures in this way, we use one minus the Jaccard similarity of the sets of times in two time signatures to

represent the ’time signature distance’ between two entities: DTS(i, j) = 1� |TSi\TSj

|TSi[TSj | . Thus, the distance

between any two time series ranges between zero and one, and for the example in Figure 1 we have that

DTS(IP1, IP2) = 1� 2
15 = 0.867.

2.2 Interarrival Shingles

In addition to flagging activity that exhibits similar temporal activity based on a large overlap in the set

of timebins with activity, we also wish to identify similar temporal behavior across entities which may be

1Note that this can be thought of as a sparse vector representation of the time series for entity i in dataset d, and in fact
this is the data structure in which each time series is stored within an RDD in the Spark implementation.
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offset by some lag. In the case of looking for automated activity associated with malicious behavior, this

would allow us to find temporal signatures of malware that are identical modulo some time offset due to

malware scripts initiated by a user action, such as clicking a link or opening a file, that could cause the

start times to differ by arbitrary lags across machines. In the case of fusing together disparate data sources

using temporal patterns, allowing for arbitrary lags can compensate for time zone differences or sensors

that are not synchronized. The example in Figure 1 shows a case where although the time signatures of

the two entities (in this case, the two IPs) are not close, there does appear to be coordination across the

two evident by the fact that the time signatures would line up (nearly) perfectly if IP2’s timeline were

to be shifted 7 units to the left. One way to see this is to compute the series of interarrival times for

each entity, which, as shown in the figure are 3,1,3,2,1,2,8,12 for IP1 and 3,1,3,2,1,2,8 for IP2. Because

the order in which interarrival times appear in a series matters, and because I wish to again allow for

imperfect or ’fuzzy’ matching of interarrival series, I define a metric not over pairs of full interarrival time

series, but over pairs of sets of ’shingles’ of interarrival times. An n-shingle is defined to be an n-tuple

subsequence of interarrival times. Thus, in the example above, the set of 3-shingles of interarrival times

for IP1 would be IA3
IP1 = (3, 1, 3), (1, 3, 2), (3, 2, 1), (2, 1, 2), (1, 2, 8), (2, 8, 12) and that for IP2 would be

IA3
IP2 = (3, 1, 3), (1, 3, 2), (3, 2, 1), (2, 1, 2), (1, 2, 8). I then define the ’n-shingle interarrival distance’ between

entities i and j as Dn
IA(i, j) = 1 � |IAn

i \IAn
j |

|IAn
i [IAn

j |
. As in the case of time signature distance, this will range

between zero and 1 and a small time signature distance will imply a small interarrival distance, however, the

converse is not true, as there may be time series with no time bins in common that exhibit identical temporal

patterns offset by some lag. The size of the shingle chosen will affect the sensitivity of the distance metric

to deviations from identical interarrival time sequences and can be chosen based on the desired ’fuzziness’

of matching time series; in general a large value of n will result in a very strict matching criteria where one

deviation in an interarrival time could cause two entities to be at the maximum interarrival distance, while

at the other extreme, a value of n=1 would allow entities with very different temporal patterns to match.

3 Data Pre-processing for Cyber Relevant Log Analysis

3.1 Time Discretization

In order to define feature spaces and distances on discrete time series data, we must of course first have time

series data that has been discretized. In the case of cyber logs, time series are already presented as discrete,

with timestamp precision that may go down the nanosecond level, however, there are several considerations

in deciding the level at which to discretize time for the purpose of time pattern matching studied here.

Network data logged by sensors is often, if not always, subject to jitter, that is, an event may not be logged

at the exact time it occurs but rather be subject to some lag. For a maximum such lag of � seconds, events

which occur at a distance of P seconds from each other, could then be observed in log data with interarrival

times ranging between P � 2� to P + 2� (with an expected interarrival time of P , if the observed lag is

stochastic with independent and stationary distribution). The ability of our analytic to detect coordinated

behavior in the presence of jitter will depend on the the time aggregation level chosen. Aggregating at a

very fine level may cause us to miss coordinated activity that fails to exhibit matching time patterns due

to jitter in logging times (false negatives), however aggregating at too high a level may cause us to flag as

coordinated activity that is in reality unrelated (false positives). The time aggregation level chosen will be

influenced by risk preferences for false negatives/positives and prior knowledge about jitter expected by a
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given sensor.

3.2 Entity Specification

For tabular data with a timestamp field, in order to extract a set of time series for multiple entities, one must

first specify the entity definition (that is, a group-by key). In the case of the application to to cyber data,

and netflow logs in particular presented below, the entity of interest may be some combination of IPs, ports,

and protocols, as in the examples below, where data is grouped by the four-tuple source IP, destination

IP, protocol, and destination port in order to define a discrete time series of binary indicators indicating

connections observed in netflow logs.

3.3 Windowing

For a given set of time series data, we may wish to identify entities with similar temporal patterns not only

over the entire time period but also those which display very similar patterns during only smaller windows of

time. In cyber log applications such as those presented in Part II, this may be due to a desire to flag specific

time signatures associated with malicious activity that occur only sporadically and interspersed with other,

legitimate activity. Another reason to allow for matching temporal behavior over shorter windows of time is

to permit entity definitions which may be dynamic over longer periods of time such as dynamically assigned

IP address, for example, which are commonly implemented via DHCP on networks. For both reasons, in the

applications below, data is pre-processed to define one time series for each entity-day, so that entities with

changing IP addresses or temporarily coordinated behavior will not go undetected due to failure of the time

patterns to match over long periods.

4 Identifying Temporally Similar Entity Groups

Given the feature spaces and associated metrics described in section 2, the problem of finding the set of

all neighbors within � of a given entity is trivially accomplished by computing the distance between the

entity of interest and all others in the dataset. When there is no one entity known to be of interest, but

rather the goal is to identify instances of any pairs or groups of entities that lie within a distance � of each

other, the problem becomes impractically large to compute by brute force pairwise distance computations

as the number of these computations scales with the square of the number of entities. In the case of the

application considered here, cyber log data, where we consider time series for each four tuple entity defined by

Source IP, Destination IP, Protocol, Destination Port, the number of entities is in the millions, making direct

computation infeasible. This is a specific instance of a more general class of ’nearest neighbor’ problems,

known to suffer from scale difficulties. Luckily, there are approximate methods available to solve this class

of problems, including the method employed here, Locality Sensitive Hashing. This algorithm avoids the

need to compute all n2
pairwise distances for a set of n entities by first applying a cleverly designed hash

function to each entity such that entities near each other in the metric space of interest are likely to hash into

the same bucket while entities which are far from each other are unlikely to do so. The number of pairwise

comparisons that needs to be made to find the set of nearest neighbors is then bounded above by n ⇤ k2

where k is the maximum number of entities hashing into any one bucket, and can be tuned via parameter

choice inputs to the algorithm. In the Jaccard distance, a minhash is used, taking advantage of the fact that

the probability of two sets receiving the same minhash value after a random permutation of element ordering
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is equal to their Jaccard similarity. For a detailed description of the algorithm, the reader is referred to

Chapter 3 of [3] which provides an excellent introduction to the concept of locality sensitive hashing and its

applications to big data analysis.

One unique aspect of the application of this methodology to matching of time series patterns for the

purpose of identifying actors that appear to be acting in a coordinated manner is the problem of matches

that occur by random chance rather than because of any actual relationship between actors. As a concrete

example, suppose a time period composed of 1024 discrete time bins is observed for a set of millions of

entities, where 1000 of these entities exhibit activity in exactly two discrete time bins, and these time bins

are chosen by each entity at random. In this case, the probability of an exact match occurring between these

length-2 time signatures for two or more entities is approximately 23%. This is a direct generalization of the

well known birthday problem describing the probability of two or more people in a room sharing a birthday

where the number of ’days’ in the ’year’ is the number of ways to choose k distinct time bins from a set

of d possible time bins and the number of people in the room is the number of entities that have activity

in exactly k time bins. Using Stirling’s approximation formula to compute the binomial coefficient

�d
k

�
for

d � k, I define a probability threshold below which I consider temporal matches to be possible random

chance collisions, and therefore not of interest. This has the effect of filtering out entities with very short

time signatures, as matches for these cannot confidently be attributed to collusion/coordination rather than

chance collisions.

2

Part II

Applications and Examples from Network Log

Analysis

In this section I present some illustrative results and examples from this algorithm applied to Silk data

grouped by the 4-tuple of Source IP, Destination IP, Protocol, and Destination Port.

3
Coordinated activity

across such 4-tuples can identify various types of scanning behavior as well as other types of unexpected

coordination across IPs. The dataset used in the examples below consists of 1.4 billion Silk records spanning

over 650,000 source IPs, 6.6 million destination IPs, and covers a time period of 150 days. Because I have

only Silk records, and no other log types with which to enrich the netflow data or provide further context,

the examples presented here show the types of automated and coordinated activity that can be detected

using only netflow data, and the types of post-processing that may be useful to distinguish between expected

or potentially malicious automated activity on a given network. Each example summarizes the observed

activity and provides an educated guess based on Cyber Subject Matter Expert (SME) input as to the

underlying activity on the network; however a definitive determination as to the nature of the activity in

these examples is generally not possible without further context. My goal is to present the set of temporal

features I am able to produce at scale for such data, with a discussion of how one might take the next step

2In fact, the chance of random chance collisions of time signatures is higher than assumed by this set-up in which I have
assumed entities to choose discrete time bins at random. In reality, some patterns of time activity (such as persistent activity
over the course of several consecutive time bins) are more likely than others and so I may still obtain some accidental matches
using this criteria.

3I have chosen not to include source port in the definition of entity as this is typically not as informative as the other four
fields in characterizing a connection. It could, however, easily be added in and would not change the methodology.
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of performing anomaly detection on these features, with the final goal of sending unexpected automated or

coordinated activity detected on a network up to human Cyber analysts for triage.

5 Temporal Group Features

In order to characterize the different types of coordinated activity we see in netflow, I define a set of additional

features on time series groups, where each group is the set of neighbors within a distance of 0.1 of each other

under the Jaccard similarity of time series metric. These feature definitions are driven by domain knowledge

Table 1: Summary of Temporal Group Features Explored in Examples

Category

Feature Definition

Communication
Type

Share Int2Int Share of entities in a given time series group that are categorized by Silk as having Source
IP internal to network and Destination IP internal to network

Share In Share of entities in a given time series group that are categorized by Silk as having Source
IP external to network and Destination IP internal to network, not on port 80 or 443

Share Inweb Share of entities in a given time series group that are categorized by Silk as having Source
IP external to network and Destination IP internal to network, on port 80 or 443

Share Out Share of entities in a given time series group that are categorized by Silk as having Source
IP internal to network and Destination IP external to network, not on port 80 or 443

Share Outweb Share of entities in a given time series group that are categorized by Silk as having Source
IP internal to network and Destination IP external to network, on port 80 or 443

Share Ext2ext Share of entities in a given time series group that are categorized by Silk as having Source
IP external to network and Destination IP external to network

Coordination
Type

Share Targetted
Port Scanning

Share of entities in a given group for which there is at least one other entity within the
group that shares the same source IP and destination port but different destination IP

Share Horizontal
Port Scanning

Share of entities in a given group for which there is at least one other entity within the
group that shares the same source and destination IP but different destination ports

Share
Coordinated

Source Activity

Share of entities in a given group for which there is at least one other entity within the
group that shares the same source IP

Share
Coordinated
Destination

Activity

Share of entities in a given group for which there is at least one other entity within the
group that shares the same destination IP

Time Series
Length

Timedelt Length of time (in seconds) between the first and last observed activity for the average
entity in the given time series group

NumBins Number of discrete time bins in which the average entity in the given group has activity
Temporal
Regularity

Interarrival
Shingle Entropy

P
s2IAn

i
p ln p where p is the empirical probability of randomly selecting shingle s from

the full set of interarrival shingles. Thus, time series that exhibit a high degree of
regularity (such as periodic behavior) will have low entropy.

Other NumDstCountries Number of distinct countries included in the geotagged set of destination IPs for entities
within the given group

and exploration of similar temporal patterns found by the above algorithm when applied to 4-tuple entity

(Source IP, Destination IP, Protocol, and Destination Port) time series netflow data. One common type of

activity that tends to be flagged for similar temporal behavior by this analytic is targeted port scanning, that

is, a source IP that connects to multiple destination IPs on the same destination port in a coordinated fashion.

Thus, grouping within each time series group by Source IP and destination Port and then counting how many

of these Source IP-Dest Port pairs correspond to more than one distinct Destination IP in that group, we
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can characterize the share of entities in a given group that exhibit similar temporal behavior that could

be thought of as ’targeted port scanning’. Similarly, we can group a set of coordinated entities to identify

IPs engaged in horizontal port scanning, that is, a source IP that connects to multiple destination ports

on the same destination IP in a coordinated fashion. For entities composed of 4 fields, there are obviously

4! distinct such ’types’ of coordination that could be identified, with varying levels of interpretability and

cyber relevance. In the examples presented here, I include statistics on the share of entities within a group

that exhibit either type of ’port scanning’ as well as the share that exhibit a more general ’coordinated

source IP’ or ’coordinated destination IP’ activity. Clearly, there is overlap in these groups, and there may

be other cyber relevant classifications that I do not include here. In addition to these characterizations of

each temporal group by ’coordination type’, I compute other aggregate statistics for each group based on

features of the individual entities and time series that are included in each, such as ’Communication Type’

(whether the logged activity represents internal to external traffic, internal to internal, etc.), ’Time Series

Length’, ’Interarrival Shingle Entropy’, and measures of the number of companies or countries included in

the geolocations of associated IPs. These features are summarized in Table 1.

5.1 Anomalies with Respect to Number of Destination Countries

Figure 2 shows a histogram of temporal groups (for both concurrent and time lagged matches) broken out

by the number of countries spanned by the set of destination IPs contained in each temporal group. As

Figure 2: Histogram of Temporal Groups by Number of Destination Countries

one might expect, the majority of coordinated netflow activity for 4-tuples of source IP, dest IP, protocol,

and port occurs across sets of 4-tuples where the IPs involved in the coordinated activity are located in

the same country (as identified by MaxMind’s geotagging of IPs). Figure 2 also depicts the breakdown

by temporal groups that contain any entity with a destination port in either 80/443 (web traffic), 6881
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(BitTorrent), or 8888. There is a clear correlation between the number of destination countries spanned

by a temporal group and the indicator for whether each of these destination ports is present within the

group. Groups containing the largest number of destination countries (up to 28) tend to include traffic over

port 6881, which is commonly used by BitTorrent, and in this case appears to be a logical guess as to the

underlying activity as the internal IP connects to dozens of hosts around the globe to transfer files over

the P2P network. The next most common destination port observed for groups containing destination IPs

across multiple countries is 8888. Pulling down the raw data associated with this traffic (see Figure 3),

we see that there are six internal IPs with similar behavior: at various points in time, they make periodic

(roughly 1 minute period) connections over port 8888 to a set of 1407 external IPs spanning 22 companies

and 26 countries. Each burst of such periodic activity lasts roughly 3 hours and connections are made to

Figure 3: Periodic, Coordinated Connections to Multiple Destinations on Port 8888

multiple destination IPs (at multiple companies and countries) simultaneously each minute. Approximately

every 10 minutes, the set of destination IPs changes, while the set of companies remains constant (that is,

every 10 minutes or so, the periodic connections switch from one set of destination IPs to a new set, within

the same set of destination companies). A small sample of these destination IPs reviewed in Shodan were

hosting 301 redirects to www[.]privateinternetaccess[.]com on port 8888 and so these logs are likely related

to legitimate VPN service. There were VirusTotal malware samples associated with this address as well,

and so this finding is an example of the type of automation that would need to be investigated further using

additional context and network specific knowledge.
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5.2 Exploring Pairwise Correlations of Output Features

The example in the previous section investigated activity yielding apparently anomalous or unusual behavior

in one dimension (number of destination countries). Here, I begin to explore the pairwise correlations

between multiple combinations of the features computed for each temporal group (see Table 1) in order to

begin developing intuition for the relationships exhibited between these features for this dataset, with an aim

to eventually move away from such manual inspection to a more automated anomaly detection framework

applied to relevant features. Figure 4 presents scatter plots of groups of 4-tuple netflow entities found to

Figure 4: Cross-correlation of Netflow Coordination Features on One Day Window Outputs

For this particular dataset, the most common ports appearing in coordination and my assigned service labels are as follows:
443-Web, 80-Web, 123-NTP, 2048-icmp echo request, 0-icmp echo reply, 53-DNS, 161-SNMP, 5228-Video/Chat/Gaming (specif-
ically google playstore, google talk), 445-SMB, 7-TCP Echo, 135-Microsoft EPMAP (remotely manages services), and 5223 -
Video/Chat/Gaming (Apple push notifications for MobileMe, FaceTime, etc. as well as other gaming). Null indicates none of
these ports are included in the group, while multiple indicates that more than one of them is.

lie within a Jaccard distance of 0.1 of each other in the time signature space for a time window of length

one day. Each point is shaded by the average interarrival shingle entropy value of the group so that lighter

colored points indicate higher degrees of temporal regularity (with the extreme of entropy = 0 indicating

perfectly periodic activity). In this plot, groups have also been labelled according to whether they include

any entities with one of the 12 most common destination ports, where these ports are labelled and grouped

together according to the service(s) commonly associated with each.

There are some strong pairwise correlations evident in these plots; namely, a concentration of groups along

the positive 45 degree line for the share of coordinated sources and the share of entities with communication

types of ’In’ or ’Inweb’, with no instances exhibiting positive ’Shr Coordsource’ values where ’Shr In’ or ’Shr

Inweb’ exceeds ’Shr Coordsource’. This 45 degree line is largely a an artifact of the unidirectional nature of

SiLK flows.

The full set of pairwise scatters presented in Figure 4 allows us to see some high level patterns that are

prevalent within this dataset in terms of characterizing the types of netflow activity that is identified as
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Figure 5: Cross-correlation of Netflow Coordination Features on One Day Window Outputs Filtering out

Groups with Common Ports

happening contemporaneously across entities. In order to uncover automated or coordinated activity that is

not typical for the network, we can examine the same scatters after filtering out the more common types of

coordinated activity. Figure 5 presents the same plots, now having filtered out all groups that contain any

entities with one of the twelve most common destination ports, as a crude way to begin a manual search for

anomalies and to continue to develop intuition about the types of activity the analytic flags. Filtering out

these groups greatly reduces the noise in the scatters and reveals a few points that appear unusual relative

to the majority, generally those lying on the interior region of a plot and not on a 45 degree line. Two such

points are investigated further and detailed in subsections 5.2.1 and 5.2.2.

5.2.1 STUN Traffic to AWS Servers

After filtering out groups containing services commonly seen to occur within contemporaneous temporal

groups, the only groups that contain entities categorized as ’horizontal port scanning’ that also include

Figure 6: STUN Traffic with AWS Servers

both ’In’ and ’Out’ communications types are those called out in the top left quadrant of figure 5. These

groups consist of communications between an internal IP and two external IPs hosting Amazon AWS servers.

While traffic between internal IPs and AWS servers is not uncommon on this network, it is uncommon to see
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bidirectional communications with an external IP on multiple ports simultaneously outside of the common

ports filtered out here. Figure 6 shows the timestamps of communications for these two entity-days (one on

Feb 2 and one on Feb 3). The destination ports 3478 and 3479 seen here are associated with Session Traversal

Utilities for NAT (STUN), a service that allows for an internal device to determine what its external IP is

by contacting a server that is sitting outside the Network Area Translator (NAT). Three possible uses of

this service are: 1) End-to-end communication devices that need to know their external IP so they can be

contacted (e.g. VoiP phones, some gaming devices, etc.); 2) Malware looking for where it is, by checking its

IP using STUN; or 3) A research project run by Dan Kaminsky at WhiteOps to detect bots using STUN.

4

While the specific activity in this case involves destinations hosted on AWS, the observed activity could be

any of the three and cannot be determined from Silk data. Based on RiskIQ reporting 52.40.62.80 being

associated with stun.ww.np.cn.s0.playstation.net and a common association of port 3479 with the Playstation

Network, this instance is most likely due to someone playing video games on the network.

5.2.2 SNMP Traffic to Unusual Destinations

Another case in which filtering out the more commonly coordinated service ports yields an outlier along

the feature dimensions of communication type and coordination type is a group of entities detected to

have simultaneous activity from the same source IP to different destination IPs where these include both

Internal to Internal (’Int2Int’) and Internal to External (’Out’) traffic. One of two such instances is a

set of communications over port 162 depicted in Figure 7. Port 162 is typically used by Simple Network

Figure 7: Simultaneous SNMPTrap (Port 162) Traffic from 10.101.2.207 to Unusual Destinations

Management Protocol (SNMP) devices to send status updates to an SNMP management device. In this

particular case, what is unusual is not that such communications occur simultaneously across multiple

machines (indeed, this may be expected on a network where machines are configured to report status at

specified times), but rather that these simultaneous communications include communications from an internal

IP to external IPs as well as another apparently internal IP. The two external IPs in this case belong to

telecom companies in Egypt and China while the internal destination IP does not appear to correspond to

a real device on the network as it never initiates any connections and only ever receives connections from

10.101.2.207 and another internal device that appears to perform ping sweeps across the internal space.

Thus, this particular anomaly is likely due to a network misconfiguration (or a device intended for another

network being connected to this one), but provides an example of the type of unusual activity that can be

flagged using these temporal features and sent up to analysts with knowledge of the network to rule out

malicious activity.

4https://isc.sans.edu/forums/STUNtraffic/745/2/
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6 Disparate Dataset Matching

The results presented in section 5 show one way in which the time series pattern matching algorithm described

above could be used in cyber data analysis: namely, by defining features over a unit of analysis which is

derived from the output of that analytic (entity groups with similar temporal patterns), and then identifying

groups that are unusual relative to the majority of observed network activity with respect to these features.

A different potential use of the analytic could be to use the temporal matching algorithm in order to merge

together disparate datasets that lack a common key but can be joined using entities present in multiple

datasets that are identifiable by their temporal behavior. In principle, this could be used on different types

of cyber logs to match network with host based data when a common key is missing, or more generally on

any sets of multimodal data where one expects temporal signatures of activity from an entity to be present

in multiple data sources. The examples presented in this section continue to use only the Silk data described

above; as such, these are not actual examples of merging together disparate data sources but show how the

same entity (IP, process, etc) might appear under different keys within a dataset, but can be identified based

on temporal patterns. It is then straightforward to imagine cases where the activity of one entity appears

in different logs or data sources under different keys, and can be matched together, thereby providing for a

way to merge the datasets on this ’temporal signature’ key.

6.1 Translated IPs

One example of an entity being represented multiple times under different keys within flow data could be an

instance of flows recorded under different IPs that actually represent the same host as appears to be the case

in Figure 8.

5
Although the logs provide no explicit information directly linking these two internal IPs, we

Figure 8: Identifying dual homed or NATTed IPs: Source IP 5.255.87.147 has simultaneous activity to two

internal IPs

can infer from the matching time signatures of activity that they are actually the same host. Figure 9 depicts

a hypothetical example of a network and sensor layout where multiple internal hosts connect to external

IPs via one external facing IP address. With the sensor placement as shown, there would be no direct

way to merge together the two sets of logs on a common join key unless we could assume that timestamps

were unique and not subject to jitter (both likely false assumptions in practice). Using the methodology

described above, however, rather than matching on individual timestamps, we can perform a fuzzy match

on time signatures, also allowing for time offsets between sensors. This would then allow us to infer the flow

5It is not clear in this dataset without further knowledge of sensor placement and network architecture why logs would record
in this way. One hypothesis is that a sensor which has visibility on both sides of a device that translates IPs (such as a Network
Address Translator (NAT) device or firewall, for example) logs a given flow once for each address. If, in fact, these two internal
IPs are distinct hosts, then the finding is more interesting as a rare occurence of an external host engaging in activity with two
internal hosts in a coordinated manner.

UNCLASSIFIED. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited) 12



Figure 9: Matching NATTed IP Flows

connections represented by the dotted gray lines in the figure which are not explicitly captured in either

individual log.

6.2 Related Processes

Expanding the notion of entity from a specific four-tuple or even IP/host to include higher level entities

such as a process or other action that leaves behind traces in log data, we can think about merging together

disparate datasets in which a given process might leave matching time signatures across datasets. As an

example from only Silk data, consider the activity shown in Figure 10. Here, we see traffic over port 443

from an internal IP to two destination IPs belonging to different companies, where the temporal pattern of

activity across the two series is nearly identical, modulo a lag of 8 seconds. Based on Cyber SME input,

traffic to domains like Apple and Facebook with such temporal patterns are common, especially if someone

leaves a web page up in their browser for long periods of time. In this instance, communications are mainly

40 bytes per instance, and likely indicate a ’heartbeat’ keep-alive transmission for services that want to

remain online and interactive. Because of the matching temporal pattern, we can infer that the same service

is communicating with both.

Figure 10: Identifying Related Processes: Source IP 10.0.160.133 connects over port 443 to an Apple and a

Facebook IP with nearly identical time signature, offset by approximately 8 sec
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7 Future Work

Much of the development thus far of the analytic presented above has involved implementing the methodology

in Apache Spark, building on the open source package spark-neighbors [2].

6
Moving forward, the focus of

the research will be on developing second stage analysis pipelines to automatically flag potentially malicious

behavior and applying the framework to new data types and use cases.

7.1 Moving Towards Automated Anomaly Detection on Temporal Group Fea-
tures

The examples presented in section 5 were investigated due to one or more apparently anomalous features

discovered by ad-hoc manual inspection of different feature distributions, filters, and pairwise correlations.

Such examples are instructive and can inform future iterations of feature selection at both the entity definition

stage as well as the specification of temporal group features defined on the groups of temporal neighbors

identified by the Locality Sensitive Hashing algorithm described above. In future work, I plan to move

Figure 11: Cross-correlation of Netflow Coordination Features on One Day Window Outputs: Colored by

Top LDA Topic Cluster

towards an automated framework where a second stage of anomaly detection or unsupervised learning is

performed on the output units of the first stage coordination detection. Figure 11 shows the same scatter

plots of output features as were depicted in figure 4, where now each point is colored by its assignment

to a primary ’topic’ as revealed by a second stage clustering analytic where a Latent Dirichlet Allocation

6Since this research effort began, Spark has added an implementation of LSH for Jaccard distance within its base ML library.
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model is fit to the data to estimate the distribution of destination port ’topics’ evident in each temporal

group. Currently, this second stage clustering is still used to explore the output manually by observing

correlations visually between topic clusters and other data features. In future research, however, I plan

to develop this second stage to include automatic flagging of anomalies where the feature set feeding into

this second stage analysis is informed by cyber expertise. In addition to the LDA port ’topic’ identification

presented here, I also plan to experiment with other unsupervised algorithms to classify temporal groups

based on a multidimensional feature space that embeds information relevant to detecting malicious activity.

7.2 Combine Output with that of Other Temporal Analysis

The algorithm presented here applied to netflow data for the purpose of identifying coordinated behavior

will tend to find automated activity, the vast majority of which is not linked to any malicious activity. For

example, a mail server which is set up to send out messages to multiple IPs at the same time may appear

in the ’targeted port scanning’ results. Similarly, any host connecting to a specific destination or port at

regular intervals (which could be the case for automated updates, for example) will exhibit a time pattern

that matches (with some lag) all other such periodic check-in behavior. Other specific analytic approaches

(in particular, using Fourier Transforms) can be applied to systematically detect and categorize such periodic

behavior in large scale time series data (see [4]), and so one dimension along which we may wish to filter

flagged coordinated activity is the regularity of the time pattern identified for a given coordinated set of

entities. This can be measured, for example, by the entropy of the the interarrival shingles defined in 2.2.

7.3 New Data Types, Use Cases, and Other Extensions

The examples of applications of the analytic presented in this paper represent a small subset of the possible

applications to cyber log data, which in turn represent a small subset of all possible applications. The

methodology of performing anomaly detection on sets of entities identified via the coordination detection

analytic to flag unusual instances of automated or coordinated activity can apply more broadly to any

application in which automation detection is of interest, while the data fusion application can be extended

even more widely. The specific network results presented here were restricted to the sample of netflow data

used in this analysis, however, there are several other examples of cyber log data where one could imagine

relevant use cases to detect malicious activity. One example of an application that I hope to research in

the future would be to apply the temporal matching algorithm to time series of passive DNS records. Such

records would identify the approximate timing of when a given domain changes the IP to which it resolves.

In theory, malicious domains whose IPs change regularly to avoid detection might follow similar patterns

of when these changes are made, if a certain actor re-uses the same automated process to update them.

By obtaining passive DNS records covering a large swatch of domains on the internet over a sufficiently

long period of time, I would be able to apply this analytic to filter down to sets of domains that exhibit

similar temporal signatures, thereby possibly identifying a new temporal ’signature’ associated with specific

malware.

In addition to extending this research to new data types and use cases, I also plan to extend the function-

ality of the method as currently implemented to match not only binary time series indicators of activity, but

to take into account magnitude of observed time series values, such as bytes transferred. The extension of

the current methodology to allow for this is straightforward, and builds on pattern matching algorithms used

for audio signal matching (see [6, 7] for example) as well as discrete time series matching algorithms such
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as dynamic time warping, and recent research developing a ’Sketch, Shingle, Hash’ approach very closely

related to the methodology presented here [5].

8 Conclusion

The ability to detect automated behavior within cyber relevant log data is a useful tool for the network

defender, as malicious activity executed by scripts or bots is likely to leave behind traces in logs. The

methodology presented here provides a means to detect certain types of automated activity within cyber logs

based on matching observed temporal patterns. This methodology is scalable, overcoming the infeasibility

of brute force methods to identify groups of nearest neighbors in large datasets by implementing a locality

sensitive hashing algorithm. The coordination methodology presented here can be thought of as a means of

feature generation for input into further analysis such as anomaly detection or unsupervised clustering to

characterize automated behavior. Alternatively, the methodology could be used as a means to fuse together

disparate data sources by generating a ’temporal signature’ key and allowing for fuzzy matching on this key.

There remain several avenues of future research open in applying and extending this methodology.

References

[1] CERT Software Engineering Institute, Carnegie Mellon University. System for Internet-Level Knowledge

(SiLK). https://tools.netsa.cert.org/silk/

[2] https://github.com/karlhigley/spark-neighbors

[3] Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge

university press, 2014.

[4] Deason, Lauren. “Detecting Automated and Periodic Activity of Varying Time Scales (at Scale) in Cyber

Relevant Log Data”, working paper.

[5] Luo and Shrivastava (2016) “SSH (Sketch, Shingle, & Hash) for Indexing Massive-Scale Time Series” -

http://proceedings.mlr.press/v55/luo16.pdf

[6] A. L.-C. Wang, "An Industrial Strength Audio Search Algorithm". (Shazam) -

http://www.csie.ntu.edu.tw/~r95162/An%20Industrial-Strength%20Audio%20Search%20Algorithm.pdf

[7] J. Haitsma and T. Kalker, "A highly robust audio fingerprinting system," in International Conference

on Music Information Retrieval, Paris, France, 2002. - http://www.ismir2002.ismir.net/proceedings/02-

FP04-2.pdf

UNCLASSIFIED. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited) 16


