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1 Executive Overview 
As operational cyber security analysts, we have invested time and resources into data science 
and mathematical approaches for identifying cyber-relevant results in network log data. We will 
describe the various successes and pitfalls from our experience. The majority of modern 
operational detection capabilities rely on detection signatures. To help move beyond signatures, 
data science techniques are actively being explored to detect threats that signatures miss. We 
will discuss the differences and trade-offs between traditional signatures and data science 
analytics as applied to network logs. Figure 1 outlines the relative merits of signature and 
anomaly based detections. This paper’s authors are individuals with backgrounds in cyber 
security operations and digital forensics incident response (DFIR), and we will touch on specific 
data science approaches and their utility in operational environments. The intended audience of 
this paper is cyber security analysts looking to incorporate data science techniques into their 
playbooks, data scientists looking to apply detection techniques to cyber security use cases, 
and anyone interested in the intersection of these disciplines. Specifically, there are several 
categories of cyber-relevant logs where data science techniques can be applied—network, host-
logs, static files, emails, and social-networking information to name a few. Our focus is on the 
applications and lessons learned specifically applying data science concepts to network logs, 
but the concepts would have applications across a variety of data types.  
 

 
Figure 1 - The relative value of artifacts detection (domains, IP addresses, hashes, etc.) over time for data science 

analytics compared to traditional signature-based detection techniques.  Adapted from Figure 19 of Ten Strategies of 
a World-Class Cybersecurity Operations Center [1]. 



 

2 
 

2 Measures for Success 
Data science techniques can be applied to find new and interesting insights about your data, 
however these solutions require significant knowledge of the network to which they are applied 
in order to yield relevant results. Marketers would want you to believe that by quickly and easily 
applying advanced analytics to your dataset, the needle in the haystack will simply reveal itself. 
However, this promise drives an unrealistic expectation of data science approaches and can 
distract from ways to measure success. This leads to a results-driven “did it detect malicious 
activity” methodology that leads us to ignore less glamorous but very useful successes in other 
ways, such as did we derive new data features or insights that can be leveraged by more 
traditional methods.  
 
From a research perspective, “did it detect malicious activity” is clearly defined as a “win”. But 
this approach can be viewed like scoring a baseball game and only considering homeruns. One 
of the aspects that makes these analytics so powerful is that they can be applied to new 
datasets and provide novel results. This works because they are able to highlight statistical 
anomalies—not necessarily the act of malicious activity, but the aberrations that make the 
activity different from the baseline. Unfortunately, in practice, the reality of network traffic is that 
it is extremely volatile and unpredictable, so much so that the vast majority of anomalies tend to 
be benign and not tied to malicious activity. Instead, these anomalies often trace back to 
esoteric benign administrator behavior, non-standard architecture, or symptoms of a break-fix 
done years ago just to keep the network operational while not cleaning up the underlying issue 
itself. Finding these benign anomalies is not a bug—it is a feature of this approach. However, for 
the analytics to be successful in a new environment, these types of anomalies need to be 
investigated, whitelisted, and incorporated into the analytics to prevent them from appearing in 
future results.  
 
Even when data science techniques find a malicious result, this is not enough information to 
surmise whether or not the analytic was truly successful or not. One of the lessons discussed in 
more detail in 4.1 “The Analytic Spectrum” is whether or not the results were discovered with the 
simplest method available. Data science analytics are often computationally expensive and can 
be more difficult to investigate compared to traditional signatures and indicator-of-compromise 
(IOC) matches. They can also be “black boxes” that are difficult to tune and require expertise to 
curate and interpret. A true measure of success is whether the analytic could detect malicious 
activity and would be able to detect malicious activity that no simpler method would also be able 
to detect. Operationally this means the analytic is able to identify malicious behavior that was 
not detected by signatures and IOCs. In other words, if the data science was able to identify 
malicious traffic that we also detected from known intelligence and Snort signatures, it is not as 
valuable of a detection as a result that was uniquely found by only the analytic. Figure 2 
visualizes the overlap between traditional method and new analytics. 

 
In practice, we found that data science analytics identify suspicious behavior that leads to the 
creation of signatures for static indicators like strings and patterns for that specific instance of 
the malicious activity. The shortcoming of such signatures, however, is that they will only be 
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useful until the attack evolves into a new implementation. Analytics based on detecting 
anomalies and outliers relative to normal behavior are often more resilient to change and may 
be able to detect both previously seen attacks (that can be detected using signatures) as well as 
never before seen attacks for which signatures have not been developed. In our research, data 
science analytics have been applied to networks where traditional signature-based defense is in 
place, and generated detections that traditional cyber operators have missed.  

 
Figure 2 - Can an analytic detect malicious activity and would it be able to detect malicious activity that no simpler 

method would also be able to detect. 

Defense-in-depth is always a goal of a successful security posture but it is important to 
understand the difference between corroborating evidence of existing results and a truly new 
detection. Only by understanding this distinction can you truly perform a value analysis on new 
analytic detection methods. Many times, the advanced analytics will deliver anomalous results 
that are not found to be malicious after investigation. This does not mean that these analytics 
were not successful. In many cases, the investigation was able to tell us new information about 
the data or lead to additional building blocks that can be incorporated back into the analytics for 
better detection next time. Additionally, in our experience we are often running the analytics on 
real and unlabeled network data—therefore we do not know whether there are any true 
positives present in the test data set. Due to a lack of training data [2] (discussed in more detail 
in Section 3.5), running the analytic on several datasets can help us determine the strengths 
and weaknesses of the analytics. 
 
In one example, we experimented with techniques to identify watering hole attacks in HTTP 
traffic. A watering hole attack is when a legitimate website is compromised and serves malicious 
content to the visitors of the site—the compromised site is typically chosen because of a high 
likelihood that the true intended victim user will visit the site. For example, websites for a local 
news site for the regional area of the intended victim are prime targets for watering hole 
compromises. We performed analysis on the HTTP referrer strings to create connections 
between domains based on understanding which domains refer to other domains within the 
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dataset—sudden changes to patterns and anomalous patterns would be investigated as 
potential watering hole attacks. In practice, this approach turned out to be too noisy to be 
reliable for watering hole detection, but by looking at the results differently - based on the 
domains with the most HTTP unique referring domains we derived a technique that can identify 
likely advertising domains. Advertising domains often appear and behave in ways very similar to 
malicious domains—they are both cryptic and try to avoid being blocked. Because of this, 
differentiating between malicious and advertising can prove difficult when looking at individual 
results. However, by creating a list of likely advertisers observed over an entire dataset, we can 
apply this label to the results of other analytics to aid analysis in determining whether a result is 
likely a benign advertisement or a malicious domain. 
 
Takeaway: Do not only consider whether a technique identified malicious activity when 
evaluating data science approaches.  Be sure also take into account if there are simpler 
methods that yield similar results, or if new insight was gained about the dataset.   

3  The Data 
Referring back to the source data will help us to answer a great deal of questions that arise from 
analytic results by providing contextual clues. For example, if alerted to a man wielding a knife, 
the context is key in determining the threat. If the man is located in a dark alley and wearing a 
mask, the risk is high; but if he is dressed as a chef preparing a meal in a kitchen, the risk is 
low. From a cyber perspective, data analysis will identify anomalous patterns, groups and 
outliers but in order to assess threat severity, we need the underlying input and relevant 
contextual data to facilitate both analysis and investigation. This depends on the Extract, 
Transform, Load (ETL) process to ensure the available data has maximum utility—in terms of 
quality, features, detail, and enrichments.1 Aside from the architecture, the perspective from 
which we view the data is also extremely important to the analysis. Sensor placement directly 
dictates traffic visibility and can be the cause of blind spots, aggregation points, and data 
duplication that can have severe downstream impacts on data analytics.  
 
Figure 3 shows the basics of investigating analytic results. It begins with querying the input data 
to see what we can learn about the event—whether it is the number of unique hosts that have 
the same pattern, the traffic immediately before and after the event, or if we have observed 

                                                
1 For example, if we are performing analysis on HTTP traffic flow, the network architecture is critical for determining 
what is “normal” traffic and what is “abnormal” for the given network. Some networks are configured to have 
workstations connect directly out to the internet, while others send all traffic through a web gateway. These two 
setups will have fundamentally different traffic patterns and understanding the expected traffic flow gives valuable 
context that should be incorporated into the analytics to tune them and minimize low-quality results. Another example 
is understanding the context of the DNS infrastructure within a given environment. Bro DNS logs, for example, give a 
great view of the protocol as it is observed on the wire within the environment. However, the analysis needs to be 
aware of whether it is reviewing DNS traffic from hosts to the DNS server, or from the organization DNS server(s) out 
to the internet.  
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similar activity before. Information like this provides us with some context about the anomaly, 
and since it originates from our dataset it is possible to incorporate it back into the analytic. 
However, not all context will be contained within the input dataset we are working with. For 
example, network-data can give us publicly accessible domains and IP addresses—where 
enrichments can help allow us to incorporate these aspects into the dataset and then be 
leveraged by the analytics. However, if the analytics are focused on more “black box” identifiers 
such as suspicious user/account behavior, getting to ground truth typically requires reviewing 
additional information such as HR interviews, employment status, or work schedules. An 
external investigative team will rarely have the ability to access these resources, and even if 
they can, they will be difficult to incorporate into an automated analytic so they tend to remain in 
the investigative domain rather than the data input domain.  

 
Figure 3 – An Outline of the traditional evaluation and investigation framework an analyst uses to assess new 

analytics as well as the manner in which it is tuned to eliminate false positives. 

Few network datasets currently available were designed with data science techniques in mind—
the data will not always be structured for efficient queries, and there may be significant ETL 
efforts required to ensure the data structure facilitates advanced analytics. Some log types are 
better suited for this than others—Bro IDS records complete summaries of events that are 
observed, which readily lends itself to data science techniques. Logging systems that perform 
sweeps to create “snapshots” of the environment are effectively sampling the dataset at points 
in time—which can lead to problems when your goal is to find events that rarely occur and only 
exist for short periods of time. However, other data types, such as Windows Event Logs, can be 
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cumbersome, cryptic and capture data features differently across different Event IDs. A data 
source like this can require a significant amount of configuration, research and ETL effort to get 
the logs into a format that facilitates data science applications.  

3.1 Data Quality 
The data itself will direct what can be learned from the analytics and logging and curating 
specific data points can be crucial. In some cases, data that was not recorded can be estimated 
or sampled—but this uncertainty will be magnified downstream, often to the point where the 
results are low-confidence at best.  The importance of data structure and quality is often 
overlooked and only realized much later in the process when it becomes significantly more 
difficult to address. In the Huntpedia Chapter 13 “Leverage Machine Learning for Cyber Threat 
Hunting”, Tim Crothers states "On a typical ML project, I spend about 90% to 95% of the overall 
time curating the data. The age-old analogy of “garbage in, garbage out” certainly applies in 
spades with ML. The better curated your data, the better your results will be. [3]”   This 
underlines the oft hidden importance of a quality ETL process. ETL is often far upstream of 
analysis and quality issues can easily be overlooked or ignored while performing analysis 
leading to inaccurate or inconsistent results.  
 
Furthest upstream from ETL is data collection—including sensor placement and decisions about 
the type of data that is being recorded. Due to cost, logistics, existing architecture, or policies, 
the data collection strategy cannot always be optimized, but the ETL process can help to 
minimize many of the pitfalls that can arise from collection shortcomings. From the sensor, the 
data can have several issues—inconsistency, gaps, duplication, and parsing issues are the 
most common in our experience. Figure 4 identifies the layers of abstraction that occur between 
data collection and analysis.  
 
Data inconsistency can involve information being recorded differently from several sensors—
the most common example is something such as the time zone. Many data science analytics 
depend on timestamps as a critical component of analysis, so the ETL process is when 
disparate sensors can be normalized to all record on consistent time.2  
 

                                                
2A more local example is the differentiation between “internal” and “external” IP addresses. Many organizations use 
RFC1918 space for internal devices (such as 192.168.x.x or 10.x.x.x IP addresses), but some organizations use 
externally routable IP addresses for internal devices or have a mix of both. This will be unique to the organization, 
and many of the analytics will need to understand what devices are considered “internal” and which are considered 
“external” to perform properly. This is a great example of a feature that can be approximated but getting a clear and 
certain understanding from the data provider will provide significant advantages and confidence to analytic results. 
Another common inconsistency we have observed is the level of aggregation employed by a sensor versus what is 
required by an analytic. An example of this is the ability to separate domain names into their component - top level 
domain (TLD) such as .com or .gov, the domain itself, and any associated subdomains. The domain 
“subdomain.google.com” may be recorded as a single entry, but the ETL process may optimally create additional 
data points of “subdomain” “google.com” and “com” to facilitate analysis. 
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Addressing data normalization immediately after the initial data ingestion will prevent several 
problems during analytic development. A best practice is to perform data normalization as an 
integral part of the ETL process. This eliminates the issues associated with data scientists each 
performing their own data transformations—namely future result replication, inability to combine 
multiple analytics that have different data inputs, and increase in runtime at each analytic 
execution. This has the added benefit of allowing your most expensive resource—data scientist 
and analyst time—to focus on solving new problems, not repeatedly rehashing old known data 
inconsistency issues. 
 
Data gaps will occur, and they can be the result of sensor issues or processing issues. Sensor 
issues, such as packet loss or data corruption can’t be fixed with ETL, but it is at this stage 
where it is most advantageous to detect and validate the data so the gaps can be identified and 
accounted for during analysis. Many of these gaps are the result of improperly sized sensors 
that either can’t handle the flow of data, are misconfigured to record the wrong data, or don’t 
have enough storage to maintain a large enough buffer before transferring the data to a 
repository.  

 
Figure 4 - The layers of abstraction introduced through observation and analysis of a network 

Data gaps can also occur as a result of the ETL process. Parsers or processes that take the raw 
data and transform it into a format that allows for massively scalable analysis need to be 
validated to ensure data integrity. Performing basic “Sanity checks”3 during initial ETL ingest can 
quickly identify issues. Unlike sensor-based gaps, data lost during the ETL process can be 
identified and corrected—as long as data validation processes are followed. Identifying these 
gaps early can prevent downstream problems with analytic results based on inaccurate 
assumptions and minimize the times data needs to be re-ingested because of ETL processing 
flaws. 
 
Data duplication can lead to its own analytic problems. This problem is often identified by 
investigating unexpected analytic results—usually requiring significant troubleshooting efforts 
and wasted analysis and processing time. To minimize this, ensure a data validation process 
reviews the data and performs checks to identify duplicate records. Duplication can be caused 
by something simple, such as records being provided multiple times in different formats or as 
the result of unsynchronized processes or multiple, overlapping sensors.4 Figure 5 outlines a 
                                                
3 For example, column and row counts, manual review of rare data values, special character handling and 
column name collisions. 
4 One data set provided logs that were archived every 12 hours and when the archive size reached a 
certain threshold. These competing processes resulted in overlapping but not identical records. Neither 
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possible sensor layout that would cause known data duplication. 
 
Data duplication can become more complicated when there are several sensors in the 
environment with overlapping visibility. For example, if multiple Bro IDS sensors are deployed 
within the environment to achieve 100% coverage, there will likely be traffic that passes by 
multiple sensors. Due to network architecture, the same traffic may appear differently across the 
sensors—as the true source IP in one log, and a NAT proxy IP address in another log. As the 
traffic is observed at different points, the timestamps will likely be similar but not exact matches. 
This type of data duplication is significantly more difficult to identify and remove from the dataset 
due to its inexact matching and may not be able to be completely eliminated without significant 
insight into the network architecture, and sensor setup. Duplication records in the database can 
affect analytics that utilize counts and ratios, artificially making certain data points appear more 
or less prevalent than they really are. In many cases, the simplest workaround to this is to 
perform analysis on a per-sensor basis or calculate results in record-sensor dyads.  

 
Figure 5 - Understanding how your sensors correspond to your network diagram is essential in preventing data 

duplication that can skew statistical analysis. 

Inherent but often overlooked in all of this is the fact that each data set will be unique and 
require some level of ETL customization. In our environment, we have worked with several data 
partners to perform analysis on the datasets we were provided. Many of these involved the 
same data type—the most common being Bro IDS records. Different versions of Bro IDS 
provide a different set of Bro IDS logs. For instance, the SMB analyzer and associated logs 
were introduced in Bro 2.5 as well as custom Bro scripts to include—or exclude—specific fields 
within each Bro IDS log. Due diligence and care must be performed when ingesting a new 
dataset—even if the data type has been processed before.  

                                                                                                                                                       
set would provide full coverage, but by combining and de-duplicating the sets full coverage of the dataset 
was achieved. 



 

9 
 

 
Takeaway:  Data quality is paramount for data science and machine learning applications. 
Invest heavily in ETL and data validation resources and ensure processes are meticulous, 
repeatable, and complete. The bottom line is if there is no trust in the data, then there will be no 
trust in the analytic results either. 

3.2 Enrichment of Data 
Once the data has been recorded, we need to consider how to facilitate our data science use-
cases and enrich the data. Whitelists and blacklists have a bad reputation in data science 
discussions—after all, we are trying to move beyond these manual techniques. In practice, 
however, the art of anomaly detection uncovers the outliers within your dataset—but the number 
of anomalies that are actually malicious is still very small [3]. For any given environment, the 
outliers will need to be investigated and conclusions made.  We need to divide the data into 
“things we know about” and “things that are new to us” so the same results are not re-
investigated over and over again. By that very nature—the category of “things we know about” 
are just the “whitelist” and “blacklist” of our results—so we do not need to reinvestigate them 
when the analytic is run again. If we think of “whitelists” and “blacklists” as data labels for benign 
and malicious—it turns out our advanced analytics were using this concept the whole time.  
 
It is rare that an analytic will be so elegant that its output is entirely high confidence, malicious 
results determined solely from behavior and feature analysis without analyst confirmation. There 
will almost always be a server that “acts” malicious but is just the network’s unique method of 
performing an essential business function. Not all lists need to address the question of “benign” 
or “malicious” as whitelists and blacklists do. As mentioned earlier, one analytic that was 
developed became a method to identify likely advertiser domains based on their prevalence 
across the dataset—or even among several datasets. These “advertiser” labels can be factored 
into the analytics themselves, but they may be more useful to use while investigating the results 
to see which results are suspected of being advertising domains allowing analysts to avoid 
spending time researching a benign rabbit hole. 
 
Advanced analytics like this can be useful to generate labels and lists to enrich data. These 
labels can then be used as features for other analytics to build upon what we have learned. For 
example, we discovered that many analytics would easily be influenced by internet network 
scanners such as Nessus. This traffic appears “malicious” in its behavior, but when we add the 
context of the authorized scanning it was no longer an interesting result. An analytic was 
developed to detect scanners, both internally and externally with the explicit purpose of labeling 
the devices as scanners. With these labels applied, known scanners could be excluded from 
future analytics and resulting in a much cleaner dataset—and more interesting results. 
Generating analytics with the goals of labeling records is frequently overlooked in the pursuit to 
find “the bad guy”—but these building blocks can prove instrumental in tuning analytics and in 
performing incident investigation.  
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Takeaway: Using any available internal or external data enrichments only helps to further build 
out what you can conclude about your network. Internal network source enhancements 
including information from places like internal network maps (such as subnet breakdowns and 
their purpose) and Active Directory user details are a quick and free way to enrich your data as 
well as being unique to your network. Incorporating external information such as WHOIS and 
geolocation data to enhance data with information such as the ASN, associated company, 
country, and city can facilitate analysis by looking for interesting patterns at different 
aggregation points if something like IP addresses prove to be too granular to derive meaningful 
results.  

3.3 Derived Data Features 
 
Other features can be derived from the data and can allow an analyst to decipher the outputs of 
“black box” analytics. For example, some analytics use scoring methodologies to calculate 
specific attributes of data entities. Often, several scoring methodologies are combined to create 
an analytic ensemble—which can incorporate several aspects of the data into a single score. 
However, these ensemble metrics can sometimes be so complex that they are difficult to 
decipher in aggregate—and providing a means for the cyber analyst to trace each component of 
the overall score individually allows the analyst to get a more holistic understanding of the 
results, especially during the research and development phases of an analytic. 
 
As an example, many of the analytics are based on the timing of events—and as a result, time-
based enrichments can greatly enhance analysis. Specifically, one feature we frequently derive 
is the “first-known” time a specific attribute (IP address, domain, etc.) was observed within the 
dataset—typically this can be quickly accomplished by taking the “minimum (starttime)” of the 
associated record. Having a data point like this available, an analyst can use it to perform a 
more in-depth analysis on domains that are new in the environment as they appear. 
 
Takeaway:  Don’t limit analysis to the out-of-the-box data that is provided. In many cases, 
enhancing the data with labels, calculations, and incorporating contextual information into your 
dataset opens up new dimensions of analysis. Remember to think beyond the data at hand and 
consider what data enhancements might facilitate your use-case and formulate a path to derive, 
calculate or import it into the dataset. As you develop enrichments, ensure that as they are 
incorporated into potential scoring ensembles, that the initial inputs are not abstracted away 
from the analyst. This has the added benefit of providing additional context to your analysts 
which can save time while triaging analytic outputs. 

3.4 How Detailed Is Your Data? 
There is often an expectation gap between the questions being asked and the amount of 
certainty that can be derived from the data available. Not all data provides the same level of 
detail—and analysis can only go as far as the data allows. Consider the levels of data fidelity 
associated with PCAP, Bro IDS, and a more generic netflow. 
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Data can be extremely feature rich, such as PCAP data—a full capture of all activity observed 
on the wire. The answers are likely in there—but they can be difficult to uncover due to the 
sheer size of the dataset and lack of data structure. Feature rich data has excellent forensic 
value if we know where to look for suspicious activity. Netflow records are quite small and can 
cover a significant range of time to facilitate statistical analysis and can allow us to find 
anomalous behavior on a very long timescale. However, if we only have netflow records 
available, it can be difficult to get to the ground truth of the cause of the anomalous behavior. 
Logs like netflow and DNS are feature poor—they are best reviewed in aggregate and can find 
promising results in in larger sets—they can tell us where to investigate, but they are not 
conducive to providing ground truth. Cyber analysts can research and provide a best guess, but 
the level of detail and certainty in these results will usually be quite low. The graphic in Figure 6 
provides some examples. 

 
Figure 6 - As detail increases, the forensic value of the data increases according. Conversely, data with limited detail 

can be useful in drawing conclusions about a network in aggregate. Adapted from Figure 5 of Ten Strategies of a 
World-Class Cybersecurity Operations Center [1]. 

Bro IDS can help bridge the gap between netflow and PCAP because it provides structure and 
features across several layers of the OSI model [4]– but it has significantly less space 
requirements than PCAP. Netflow data typically does not provide more detail than the 
TCP/UDP, IP and port information (OSI level 4); application and user level data is not available, 
so there is a significant amount of information simply not available for analysis and investigation. 
For the most common protocols, Bro IDS is more powerful because it automatically derives 
many of the most valuable features and uses the connection ID to link the records across the 
associated logs. It provides structure and correlation that can help get us closer to ground truth. 
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Takeaway:  All of our analytics are attempting to maximize the insight we can get from our 
data—but we must be cognizant of the limits of what insight can be obtained from a particular 
data type.5 Sometimes we need to work within the practical constraints of our data where a low 
certainty conclusion might be better than nothing, but too many inconclusive results can hinder 
an analyst from effectively being able to compare what techniques worked to which did not. 
Even if an analytic is focused on a specific protocol or log type, the availability of corresponding 
data for investigation and ground truth is very important.  

3.5 Training Data 
To begin experimenting with supervised machine learning algorithms (including deep-learning), 
we need to have labeled training datasets. Ideally, we would be able to apply a labeled dataset 
to our use-cases to take advantage of supervised learning approaches, however training data 
can be especially difficult to construct from network logs for several reasons. First, network logs 
do not necessarily have a one-to-one relationship between malicious activity and recorded 
events. For example, in the case of a DNS exfiltration “event,” hundreds or even thousands of 
DNS records would need to be observed with a suspicious pattern in order to trigger a legitimate 
alert—no single log event would be considered “malicious” by itself. This concept can make 
applying “malicious” or “benign” labels to the event level difficult and likely misleading taken out 
of context or removed from the aggregate use-case.6 We are often looking for malicious 
behavior, not simply malicious events. Thus, the sum of events can tell us more than the 
individual isolated events themselves.  
 
The second challenge is ensuring that the labels are relevant to the question being asked. The 
most common question is “is it malicious?”, but as we know even this can be difficult to attribute 
to a single log entry. Even in cases of malicious traffic, absolute certainty is not always possible 
resulting in the analyst’s “best guess” as to whether something should be considered malicious 
or not. But beyond that, the labels that are applied to the dataset need to be relative to the 
question that is being asked. If we managed to get a whitelist and blacklist of domains to apply 
labels to our dataset, that can give us information to answer the “Is it malicious?” question. But 
this is just one of the ways we can look to label the data. One of our exercises was to attempt to 
label devices within the internal environment based on their network behavior to see if their 
primary purpose could be determined (Domain Controller, DNS server, scanner, web-server, 

                                                
5 Netflow does not contain domain names, so that layer of analysis is going to be approximate at best. 
DNS provides domains but does not provide the specific ports or protocols that communicate with those 
domains once they have been resolved. HTTP records can provide details such as user agent strings, 
MIME types, response codes and methods to get a better sense of what likely happened during the 
transaction—and PCAP can provide us the contents that were exchanged and likely ground truth. In 
practice if we have DNS analytics that identify rare and suspicious domains, the analytic may not 
incorporate netflow records, but the investigation into that result would gain great insight in determining 
the ports used and bytes transferred to IP address associated with the suspicious domain 
6The unit of analysis is not always known (nor easy to define), labels are not always defined at the “event” 
or row-level, just as a pixel of a cat image cannot necessarily be labeled as a cat without the context of 
the rest of the pixels. 
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etc.). For this use-case, the benign/malicious label does not apply and, instead requiring us to 
address the question of “What is this device’s role?” 
 
Acquiring the right data can be one of the most difficult parts of the training data problem. For an 
ideal, controlled environment, we would want to obtain training data that is fully labeled to 
appropriately address the questions we are trying to answer. Training sets exist in this space, 
but they rarely have the breadth, depth, and steady-state noise to reliably model our use-cases 
in real-world data. Training sets become out-of-date very quickly, which means they have traffic 
patterns, devices, and threats that quickly lose relevance in an operational environment. One of 
the most frequently referenced training datasets was created by DARPA [5]—however the most 
recent iteration is from 2000.  It is no longer a realistic representation of real networks at this 
point in time.  
 
3.5.1 Considerations for Obtaining Data for Supervised Learning 
There are a number of important considerations when obtaining a training data set for 
supervised learning [2] —it is our opinion that these generally concern the method of generation 
of the data. Training datasets are usually obtained in one of three ways—simulated, 
anonymized, or third-party provided with a sharing agreement. Each have their own benefits 
and drawbacks—and using the best match for your specific situation is up to you. 
 
Simulated Data 
Simulated datasets will replay traffic modelled on observed behavior and are typically not 
recorded directly from actual human activity. This can lead to unnatural patterns and artifacts 
that would not typically be observed in real world data. These artifacts can have adverse effects 
on analytics, as they become tuned for patterns that do not exist in real world scenarios. 
Analytics can be tuned very well in a simulated environment, but the results will likely be very 
unpredictable and inaccurate when they are introduced in real-world scenarios. Existing data 
sets in this category are both small in total size as well as limited in their applicability to modern, 
more massive networks.  
 
Anonymized Data 
Anonymized data provides real-world datasets that have scrubbed sensitive and personally 
identifiable data to make the original user and organization information anonymized. This data 
will be closer to real-world scenarios, but the scrubbing process to get the anonymization can be 
very difficult to perform completely. Sensitive information can show up in places you would 
never expect—URLs can have plaintext of users’ identities for instance. Information can be 
input in the wrong field, such as passwords accidentally being entered into the “username” field. 
Mistakes like these are easily missed by the scrubbing process. The anonymization process 
itself will also introduce artifacts that can alter how the analytics process the data, which can 
lead to unexpected results in real-world scenarios. Further, anonymized data is much less likely 
to be labeled than a simulated dataset because it was generated from large, real-world 
enterprises. 
 
Third Party or Self-Obtained Data 
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The last data type is real-world data—provided by a third party or collected internally. This data 
is the best option for testing analytics in operational environments. If obtained from a third party, 
it will likely require strict data handling agreements to include a fortified, secured infrastructure 
to severely limit access to the data. This can put constraints on the personnel that are 
authorized to access the data, while introducing bureaucratic hurdles. While this is a necessary 
requirement for this type of data, these restrictions tend to have less of a negative impact on 
analytic results relative to the drawbacks of simulated or anonymized data due to their inherent 
lack of highly sensitive information. Third party datasets are often provided with the 
understanding that results will be provided back to the data provider in exchange for 
researcher’s access to the data. The obvious drawback to this scenario is that the research 
team tends to focus more on finding actionable results and have less adherence to generating 
scientific, repeatable analytics due to external pressures to maintain the mutual value of the 
sharing agreement. Data providers can shape the direction of the analytics based on their 
expectations and requirements to “find bad,” which may not always align with performing 
repeatable and sound data science analytics.  
 
Takeaway:  Labeled network data is difficult to acquire—and the resources are going to be 
either simulated, anonymized, or real-world network datasets. Each have their own benefits and 
drawbacks that will apply to your use-cases. In many instances, the scarcity of available 
datasets may be the largest factor to shape your analytic development process, as is the adage 
“beggars can’t be choosers.” To attempt to account for the lack of labeled training data, the 
practical approach we recommend is to work with live, updated network data and specifically 
integrate into a capable, functioning SOC environment. This setup allows a better chance of 
getting to ground truth of the analytic results and provides the opportunity to use the SOC 
ticketing system to apply labels to the datasets and improve your detection and analytics over 
time. This integration also provides insight into how security operations are performed and gives 
an opportunity for data science personnel and cyber security experts to more closely collaborate 
on the formation and development of their use-cases.  

4 The Structure of the Analytics 
This section will discuss the approach and techniques of the analytics themselves. We will not 
go into the mathematical details of specific algorithms, but rather provide aspects to be 
considered in the analytic development process that are often overlooked or not considered at 
the onset. By keeping these concepts under consideration, we hope to better inform the goals, 
approaches, and results of future analytics.  
 
To start, ensure all parties are using consistent terminology of the term “analytic.”  People may 
say they want research into “analytics” but the end state of what that looks like can be nebulous. 
The specific definition of an analytic is “separating something into component parts or 
constituent elements” [6] which implies that an analytic is as simple as representing the data in 
a new and insightful way. Many analytic concepts can be described in plain language, such as 
“We look for web traffic with less than 3 source IP addresses, a single destination domain, one 
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unique URI, and only uses the POST method.”  It can also be a new approach of looking at the 
data, such as “To detect potential Denial of Service (DOS) attacks, we look for periods of 
activity with a higher than average number of IP addresses that have not been previously 
observed in the data, that is, spikes of newly observed IP addresses.”  Both of these examples 
can be expressed as query strings or simple code, but it is also easy to convey the steps or 
concepts in plain English and to rapidly implement on new systems. These concepts are simply 
a new way of thinking about the data, and the transition of the idea can be as simple as a 
conversation—they are basic concepts than can applied to several datasets to find new insight 
into the data. We would consider techniques like these to be data concepts and not analytics, 
but they can be referred to as analytics—and this distinction should be made clear up front. 
 
Others consider an analytic to be complex executable code. For example, K-means clustering is 
an analytic that can be used to measure the distance and grouping between certain entities, but 
by itself doesn’t generate understandable analytic results. However, an implementation of K-
means clustering that has chosen a suite of features and has interpretable, repeatable outputs 
would require executable code to be run. Successfully applying this algorithm to a cyber use 
case requires significant domain knowledge of both the intricacies of the clustering approach 
and the data being analyzed. Complex concepts like this are sometimes referred to as 
“analytics,” and often what is meant by the term “analytic” is a specific, production-tested 
implementation of a data science concept applied to a use-case. Ideally it would be modular and 
be able to run in another environment with minimal effort—“push button analytics.”  Even better, 
it would be able to produce a small set of high-confidence results and could be run by an entry-
level analyst that does not need to understand what the analytic is doing under the hood but has 
enough knowledge and understanding of how to interpret and investigate the results.  
 
Clearly, there is a vast difference in the amount of effort, expertise and understanding between 
the examples above—especially over how to transition an analytic from the research realm to 
the operational realm. Both interpretations are valid, as this is just a symptom of the popularity 
of the term “analytic” being used (and over-used) in the current landscape. Whichever definition 
is used, it’s important to ensure that all stakeholders in the process are in agreement with the 
expectation and understanding of how the term “analytic” will be used during the effort.  

4.1 The Analytic Spectrum 
The analytic spectrum is a general concept that shows the relationship between the cycles that 
will be spent developing an analytic compared with the cycles that will be spent investigating the 
results.  It is directly related to the specificity of the use-case the analytic is trying to address. 
There are exceptions, but normally a more generic use-case will have more generic results, 
which will require additional time to investigate. A more specific use-case will typically require 
significant analytic development time, but the results will likely be highly confidence and require 
less investigation time. The benefits of general use-case analytics include the ability to be 
rapidly deployed to new environments with minimal changes—so they are excellent candidates 
for understanding the intricacies of a new network, but they will likely produce relatively 
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uninformed results that need to be investigated in the context of the dataset. The relationship is 
shown in Figure 7.  

 
When exploring a new dataset, our team was often given the initial guidance of “see what you 
can find.”  With no previous domain knowledge of the dataset, we were unaware of the specific 
problem areas, network architecture, and gaps of the data provider. This lead to more generic 
use cases, looking at traffic patterns for abnormal traffic patterns based on general concepts like 
port usage, bytes transferred, and unusual node-edge relationships. These analytics often 
resulted in identifying things such as authorized vulnerability scanners, legitimate administrator 
activity, and customized internal processes. The analytics were relatively generic, but the time 
needed to investigate and analyze the results was significant because of a high number of false 
positives. 

 
Figure 7 - The amount of time required for an analyst to investigate results from an analytic is correlated with how 

specific of a use case the analytic is seeking to detect. 

More specific use-cases can take significant time to develop, and they typically can incorporate 
unique context and data points that may not be available in all datasets. This could will include 
narrowing your focus to business critical risks first rather than employing a scattershot approach 
across the entire enterprise. These use cases will likely only apply to a narrow set of conditions, 
but the results can be very high confidence. These can lend themselves to push-button analytic 
solutions because of the amount of information and context that goes into producing the results. 
However, because of the dependence on dataset context and esoteric details that will differ 
from one dataset to another, they are typically poor candidates for analytics that can quickly be 
deployed to new environments. It can be done, but often requires extensive tuning and 
configuration before the analytic can match its performance within the original dataset. Crafting 
a defined and specific use case allows a data scientist to more intelligently select features and 
construct better models. This also includes developing unique pre and post processing steps to 
better structure the data. It has been our experience that following these basic guidelines has a 
significant impact on the quality of the results. For example, using different clustering algorithms 
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often matters very little relative to the impact that feature selection and model engineering have 
in creating successful analytics [7]. 
 
With all analytic development, it is important to ask three questions: 

x Can it detect something new or reinforce a different, lower-confidence detection? 
x Is this analytic the best approach for this use-case? 
x Is the goal to find something new or to reduce existing workload? 

  
Can it detect something new? 
It is always exciting when your analytic has a legitimate result—it has found what it is looking 
for!  However, a check to see if this is a new result or one that was found previously will help us 
determine the functionality of this result. For example, if a complex, data science technique 
detects a malicious activity which can be detected faster and with equal or greater confidence, 
such as using a simple count and descending sort, the utility of the computationally expensive 
data science approach is significantly reduced. Care must also be taken to understand the 
reason for the detection (or lack thereof)—not all datasets will contain the attack, so a lack of 
results does not mean the analytic did not necessarily work. 
 
Is this analytic the best approach for this use-case? 
In general, an analyst’s goal is to detect malicious activity with the simplest approach possible—
this does not outright mean that a data science analytic with the same result as a simpler query 
is not successful. Often, malicious activities have multiple behaviors that differentiate it from the 
benign traffic within a dataset—so even if the specific result of malicious behavior was already 
found, if the data science approach leveraged a different feature set to identify the result it could 
have significant value and boost confidence of specific signatures amongst the noise. The ability 
to identify unique, suspicious aspects within the data is what should be evaluated—not only the 
specific results themselves.  
 
Is the goal to find something new or to reduce existing workload? 
The advanced analytics may not find new results, but they can still be successful if they provide 
insight or context that significantly reduces the investigative workload. For example, in one use 
case, the cyber analysts needed to spend 40+ hours manually stitching together two disparate 
but related datasets—there was no common feature to join on other than the timestamp. 
However, an analytic pipeline or data engineering process was developed to conduct 
probabilistic record linkage across the two logs. Once this was generated, the resulting output 
allowed the cyber analysts to perform the same analysis in a matter of minutes. The analytic 
wasn’t intended to find a result, but rather its goal was to create new data points that 
significantly reduced the existing workload. These types of analytics won’t necessarily have 
direct malicious results to point to, but their development significantly improved the analyst 
workflow and created new features which enabled the generation of additional analytic results 
and investigations. 
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Takeaway:  Establish consistent definitions between all stakeholders on the terms and 
expectations of the effort. Ensure stakeholders understand the analytic spectrum, and the 
tradeoffs between general and specific use-cases to maintain realistic expectations.  

4.2 The Semantic Gaps 
One of the primary goals of applying data science analytics to cyber relevant data is to provide 
high-confidence results to entry level cyber analysts to investigate and triage. The goal is to 
leverage the advanced logic driven results of data science but lower the level of expertise 
needed to interpret the results. However, for this to be successful, it is important that the 
analytic results are expressed in terms that have meaning to the cyber analyst [2]. 
 
Many of the data science driven algorithms take the dataset and perform feature engineering. 
These features, such as outlier scores, distance metrics, clustering similarities, and relational 
graph edges, drive results—these features often allow for the identification of anomalous 
enterprise activity, helping anomalies to statistically stand out from the rest of the data. This type 
of analysis is the heart of what drives the data science– but it can be an impediment to 
investigating the results for the cyber analyst. 

 
Figure 8 - It is non-intuitive to identify suspicious cyber security behavior from this graph, so translating this output 

into something familiar to a cyber analyst is critical. 
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Cyber analysis is rooted in Digital Forensics and Incident Response (DFIR)—evidence driven 
analysis. In order to investigate the data science analytic results, we need to assess “what 
happened” to identify the ground truth explanation of the results.  This normally includes 
investigating traffic patterns, IP addresses, ports, bytes transferred, domains, user-agents, and 
other tactile data points that can be attributed to a timeline of “what happened.” 
 
When cyber analysts receive analytic results that explain anomalies in terms of mathematical 
terms, they can be difficult to interpret and bring back to the tactile, sequence-based logs to find 
an explanation as seen in Figure 8. For example, if a cyber analyst is provided a list of results 
from a run of K-means clustering looking for anomalous IP addresses and the top result is given 
an outlier score of -7.6259, the cyber analyst needs to investigate several aspects of that IP 
address to determine what makes it unlike the rest of the data. This is not a specific lead, and 
the analyst would need to investigate several aspects of the result to begin to make sense of 
possible reasons for this outcome. A cyber analyst is likely to ask, “When was this IP acting 
suspicious?” and that depends on the window of data that the analytic analyzed, and in fact 
cannot point to any specific row in a log. Going through several results like this, cyber analysts 
may become fatigued and are more likely to misunderstand the results—this could result in 
improper investigation or overly hasty triaging as too complicated for analysis in favor of more 
immediate, clear results. Even if the accuracy of the data science analytics is high, if their 
accuracy cannot be successfully explained to the target audience (cyber analysts) they do not 
provide much operational utility. 
 
This problem exists at various levels—not all data science driven analytic approaches have this 
issue to the same degree. Analytics aimed at identifying time sequences, for example, may 
perform analysis that can be presented in terms of the data itself, and so results that show “the 
following IP address had periodic activity every 6 minutes to the suspicious domain” is readily 
understood and interpreted by cyber analysts. However, more abstract data science concepts, 
such as graph analysis and clustering methods, tend to rely heavily on engineered features 
producing results that are far abstracted from the original data and harder to interpret. 
 
Takeaway: To do their jobs, cyber analysts have to investigate the technological first-principles 
that create anomalous artifact trails identified by data science. The goal should be to provide 
results in the terms of the governing first-principle data, not in terms of the mathematical 
analysis or engineered features that were used to identify the anomalies. Even using plain 
English results such as “The analysis found that this host was 98% different than the normal 
profile” does not give the cyber analyst a place to start their investigation, or a specific event or 
time range to focus on [2]. To be successful, the results need to be provided using the terms of 
the original dataset as much as possible—and minimize the level of abstraction that is provided 
back to the target audience. 

4.3 The Base Rate Fallacy 
One of the most overlooked aspects of data science driven analytics is the base rate fallacy [8]. 
The base rate fallacy is a logical flaw that leads people to assign greater emphasis to specific 
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information (such as the results of an analytic run) over generic information (such as how likely 
an event truly is within the dataset). In other words, malicious cyber events are very rare in most 
data sets—often on the order of one in a million or one in a billion records. Thus, the actual 
chance that we have detected a malicious event is extremely rare—yet we tend to think that our 
analytic results are very likely to be true malicious detections. 
 
For a real world example, we can look to medicine. Doctors frequently administer tests on 
patients to see if they have a specific trait, such as left-handedness. Let us say that we know 
the base rate of occurrence of this trait is 25% of the population.  On a particular test we know 
the percent chance of getting a true positive (recall) is 99%. We also know that the false 
positive rate is 10%. With these factors, people tend to believe that the true detection rate is 
close to the recall of 99%, however if we were to run 1000 tests we would have 247.5 true 
positive detections and 75 false positive detections, for a positive prediction value (precision) of 
only 77% as outlined in Figure 9.  

 
Figure 9 - Both recall—the odds of a true positive—and the false positive rate dramatically impact the precision. 

Using the same recall and false positive rates but applying them to a scenario with a base rate 
of 10% shows how the base rate can impact the results. In this scenario, 1000 tests will result in 
99 true positives and 90 false positives—resulting in 52% precision. Effectively what is 
happening is the relatively small false positive rate is being magnified by 90% of the data while 
the 99% detection rate only applies to 10% of the data as can be seen in Figure 10. The number 
of instances in the dataset has a significant impact on the resulting precision [9].   
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Figure 10 - The lower the Base Rate, the more dramatic of an impact your false positive has on your results. 

Applying this to cyber-security use cases, the problem is magnified significantly. Cyber use 
cases are looking for that needle in a haystack—malicious or anomalous events that occur very 
infrequently in a data set. If we take a signature or technique that can detect malicious activity 
with 99% accuracy and a tiny 0.015% false positive rate and apply it to a scenario with a base 
rate of 1 event per 1 million logs we start get a sense of the scale of this problem. In 1 million 
tests, this scenario will have 0.9 true positive detections and 150 false positive detections—
effectively 1 true positive for every 166 false positives as outlined in Figure 11. Precision at 
these levels can result in significant analyst hours investigating and following-up on events with 
no consequence. 

 
Figure 11 - Here our minuscule base rate penalizes even the smallest of false positive rates. 

We can use the same scenario but let’s say we successfully tuned our detection analytic to 
have 100% accuracy—in other words, we know it can detection every single instance of the 
malicious event in the dataset. However, the false positive rate remains unchanged at 0.015%. 
In this improved scenario, we still have 150 false positives for every 1 true positive detection—
which still leads to a significant investment in analyst cycles spent investigating benign activity.  
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Figure 12 - At larger scales, minimizing false positive rates pays substantial dividends for your cyber analysts. 

We can start to see a significant improvement if we are able to improve the false positive rate. If 
we are able to reduce this from 0.015% to 0.001%, in our 1 million test scenarios we now detect 
9.9 false positives for every 1 true positive for 9% precision as is outlined in Figure 12. While 
this means the cyber analysts will need to investigate 10 times as many false positives as truly 
malicious events, it is still a marked improvement from the 150 results discussed earlier.  
The examples above are theoretical—in practice, with an unlabeled dataset it is extremely 
difficult to know the true event base rate of your data as well as the recall and false positive rate 
of your analytics. Values can be sampled and estimated, but without a complete labeled dataset 
to test you will likely not be able to know these specific values in practice.  The values are also 
volatile and change over time as specific attacks techniques evolve.  Despite these challenges, 
the key takeaway is to get an understanding of the problem set—even “pretty good” detection of 
very rare events in extremely large datasets can be dwarfed by the detection of benign events.  
 
Takeaway: As discussed earlier, analytics are often judged and touted based on the number of 
significant, real-world detections they have discovered. However, the number of false positives 
that were generated and investigated en route to those impressive finds is often overlooked. We 
recommend placing an emphasis not only on increasing the detection accuracy of the analytics 
but also expending significant resources into understanding and reducing the false-positive 
detections as much as possible. This can be something as simple as post-processing results 
with known whitelists to remove the bulk of the false positives, but one of the primary goals of 
data science analytics is to reduce the workload on cyber-expertise personnel—their time is a 
limited resource and needs to be treated as such. Each analytic is different—there may be 
cases where the impact of the threat the analytic is detecting is so great that the acceptable 
number of false positives is significant. But there are others where a cost-benefit of the analytic 
accuracy compared to analyst time needed to follow-up should be explored and evaluated. This 
is another reason why specific use-cases and analytics can improve the downstream process—
they have a narrow goal and can typically lead to reduced false-positives as part of the analytic. 
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5  Conclusion 
Data science and cyber security are both relatively new fields of study.  As such, we must 
carefully consider our approach in the research and implementation of new analytics for 
network defense to avoid spending unnecessary cycles on implementation and support 
problems. Crafting specific use cases and carefully selecting features plays a significant role 
in the success of an analytic; therefore, ensuring that we perform this initial due diligence is 
critical. The measurements, the data, and the analytics themselves need to be carefully and 
methodically understood early in the building process so they can be leveraged effectively. 
The choice of one algorithm over another is frequently dwarfed in effect by the importance of 
solid feature selection and data engineering. We also need to think critically about the 
shortcomings and pitfalls of advanced cyber security analytics that we develop and observe, 
to ensure that we do not misplace our confidence in results before they are fully proven or 
understood. We hope that the lessons learned and considerations discussed in this 
whitepaper will help the community move closer to that goal.  
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